The WUSCHEL‐RELATED HOMEOBOX 3 gene PaWOX3 regulates lateral organ formation in Norway spruce

نویسندگان

  • José M Alvarez
  • Joel Sohlberg
  • Peter Engström
  • Tianqing Zhu
  • Marie Englund
  • Panagiotis N Moschou
  • Sara von Arnold
چکیده

In angiosperms, WUSCHEL-RELATED HOMEOBOX 3 (WOX3) genes are required for the recruitment of founder cells from the lateral domains of shoot meristems that form lateral regions of leaves. However, the regulation of the formation of lateral organs in gymnosperms remains unknown. By using somatic embryos of Norway spruce (Picea abies) we have studied the expression and function of PaWOX3 during embryo development. The mRNA abundance of PaWOX3 was determined by quantitative real-time PCR, and the spatial expression of PaWOX3 was analysed by histochemical β-glucuronidase (GUS) assays and in situ mRNA hybridization. To investigate the function of PaWOX3, we analysed how downregulation of PaWOX3 in RNA interference lines affected embryo development and morphology. PaWOX3 was highly expressed in mature embryos at the base of each cotyledon close to the junction between the cotyledons, and in the lateral margins of cotyledons and needles, separating them into an adaxial and an abaxial side. Downregulation of the expression of PaWOX3 caused defects in lateral margin outgrowth in cotyledons and needles, and reduced root elongation. Our data suggest that the WOX3 function in margin outgrowth in lateral organs is conserved among the seed plants, whereas its function in root elongation may be unique to gymnosperms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

WUSCHEL-RELATED HOMEOBOX 8/9 is important for proper embryo patterning in the gymnosperm Norway spruce

Proper embryo development is crucial as that is when the primary body axes are established. In Arabidopsis, AtWOX8 and AtWOX9, members of the Wuschel-related homeobox (WOX) gene family, are critical for embryo development. In Norway spruce, PaWOX8/9, which is expressed in embryos, is the homologue of AtWOX8 and AtWOX9. In this work, it is shown that the transcript abundance of PaWOX8/9 is high ...

متن کامل

A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.

YABBY and WUSCHEL-LIKE HOMEOBOX (WOX) genes have been shown to play important roles in lateral organ formation and meristem function. Here, we report the characterization of functional relationship between rice (Oryza sativa) YAB3 and WOX3 in rice leaf development. Rice YAB3 is closely related to maize (Zea mays) ZmYAB14 and Arabidopsis (Arabidopsis thaliana) FILAMENTOUS FLOWER (FIL), whereas r...

متن کامل

Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs

Barley (Hordeum vulgare L.) is the fourth most-produced cereal in the world and is mainly utilized as animal feed and malts. Recently barley attracts considerable attentions as healthy food rich in dietary fiber. However, limited knowledge is available about developmental aspects of barley leaves. In the present study, we investigated barley narrow leafed dwarf1 (nld1) mutants, which exhibit th...

متن کامل

Differential recruitment of WOX transcription factors for lateral development and organ fusion in Petunia and Arabidopsis.

Petal fusion in petunia (Petunia x hybrida) results from lateral expansion of the five initially separate petal primordia, forming a ring-like primordium that determines further development. Here, we show that MAEWEST (MAW) and CHORIPETALA SUZANNE (CHSU) are required for petal and carpel fusion, as well as for lateral outgrowth of the leaf blade. Morphological and molecular analysis of maw and ...

متن کامل

The DORNRÖSCHEN/ENHANCER OF SHOOT REGENERATION1 Gene of Arabidopsis Acts in the Control of Meristem Cell Fate and Lateral Organ Development

The two main tasks of a meristem, self-perpetuation and organ initiation, are separated spatially. Slowly dividing cells in the meristem center act as pluripotent stem cells, and only their derivatives in the meristem periphery specify new organs. Meristem integrity and cellular proliferation are controlled in part by regulatory interactions between genes that are expressed in specific subdomai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 208  شماره 

صفحات  -

تاریخ انتشار 2015